Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
China Journal of Chinese Materia Medica ; (24): 4410-4416, 2021.
Article in Chinese | WPRIM | ID: wpr-888140

ABSTRACT

This study was mainly based on the compatibility of Puerariae Lobatae Radix and Chuanxiong Rhizoma to prepare submicron emulsion and evaluated its physical and pharmaceutical properties. Firstly, pseudo-ternary phase diagrams were drawn by dripping method which took Chuanxiong oil as the oil phase and the area of microemulsion region as the index. On this basis, suitable emulsifier and co-emulsifier were screened for the preparation of Chuanxiong oil submicron emulsion. Then, the formula realizing the largest oil loading was selected. Finally, puerarin substituted part of emulsifier and co-emulsifier to lower their content, so as to form puerarin-Chuanxiong oil submicron emulsion featuring the combination of medicine and adjuvant. Its particle size, zeta potential, centrifugal stability and storage stability were determined, and the in vitro drug release behavior was investigated by dialysis bag method, based on which the quality of the as-prepared submicron emulsion was evaluated comprehensively. The proposed method was proved feasible for the preparation of Chuanxiong oil submicron emulsion, which adopted polyoxyethylene castor oil(EL-40) as the emulsifier and was free from co-emulsifier. The formula of the maximum oil loading was found as Chuanxiong oil∶EL-40∶water 3∶7∶90. Further, puera-rin successfully replaced up to 10% of the emulsifier in submicron emulsion. Eventually, the optimal drug-loading formula was determined as puerarin∶Chuanxiong oil∶EL-40∶water 7∶30∶63∶900. The quality evaluation results of the as-prepared submicron emulsion demonstrated that the average emulsion droplet size was 333.9 nm, the PDI 0.26, and the zeta potential-10.12 mV. The submicron emulsion had a good centrifugal stability and did not present any instable phenomena such as delamination and precipitation during its standing still for 50 days. The evaluation of in vitro drug release behavior indicated that the submicron emulsion was capable of releasing the drug completely. The puerarin-chuanxiong oil submicron emulsion prepared in this study possessed a stable quality and to some extent increased the solubility of puerarin along with a sustained-release effect. This study provided ideas for the clinical application of puerarin.


Subject(s)
Emulsions , Isoflavones , Particle Size , Solubility
2.
China Journal of Chinese Materia Medica ; (24): 2051-2060, 2021.
Article in Chinese | WPRIM | ID: wpr-879129

ABSTRACT

Nanocrystals self-stabilized Pickering emulsion(NSSPE) is a new kind of emulsion where only nanocrystals of poorly soluble drugs are used as stabilizers. Our previous study showed that NSSPE with Ligusticum chuanxiong oil as the main oil phase can significantly promote oral absorption of puerarin. The present study aimed to explore its absorption mechanism in oral administration. The in vitro dissolution test was carried out to study the effect of NSSPE on release of puerarin. The effects and mechanism of NSSPE on uptake and transport of puerarin across Caco-2 cell were investigated. The results showed that the drug release rate of NSSPE was similar to that of nanocrystals, with their cumulative dissolution of puerarin not affected by pH of releasing mediums, both significantly higher than that of crude material. The uptake of puerarin in NSSPE was concentration-dependent and significantly higher than that of solution or surfactant stabilized emulsion. Genistein and indomethacin, inhibitors of lipid rafts/caveolin, could significantly reduce the uptake of puerarin in NSSPE. Compared with solution, NSSPE and surfactants stabilized emulsion obviously increased transport rate K_a and apparent permeability coefficient P_(app) of puerarin in AP → BL direction, but there was no significant difference in BL → AP direction. It could be inferred that there were both passive and active transport mechanisms, as well as lipid raft/caveolin mediated endocytosis for absorption of NSSPE. The promoted oral absorption of puerarin in NSSPE was mainly related to the existing nanocrystal form which could promote dissolution, puerarin as well as Ligusticum chuanxiong oil which could promote drug transmembrane transport and inhibit drug efflux. It is the unique structure and composition of the compound NSSPE that promoted the oral absorption of puerarin.


Subject(s)
Humans , Caco-2 Cells , Drugs, Chinese Herbal , Emulsions , Isoflavones , Nanoparticles
SELECTION OF CITATIONS
SEARCH DETAIL